On Generalized Fibonacci Polynomials: Horadam Polynomials
نویسندگان
چکیده
In this paper, we investigate the generalized Fibonacci (Horadam) polynomials and deal with, in detail, two special cases which call them $(r,s)$-Fibonacci $(r,s)$-Lucas polynomials. We present Binet's formulas, generating functions, Simson's summation formulas for these polynomial sequences. Moreover, give some identities matrices associated with Finally, several expressions combinatorial results of
منابع مشابه
Some Generalized Fibonacci Polynomials
We introduce polynomial generalizations of the r-Fibonacci, r-Gibonacci, and rLucas sequences which arise in connection with two statistics defined, respectively, on linear, phased, and circular r-mino arrangements.
متن کاملGeneralized Bivariate Fibonacci Polynomials
We define generalized bivariate polynomials, from which specifying initial conditions the bivariate Fibonacci and Lucas polynomials are obtained. Using essentially a matrix approach we derive identities and inequalities that in most cases generalize known results. 1 Antefacts The generalized bivariate Fibonacci polynomial may be defined as Hn(x, y) = xHn−1(x, y) + yHn−2(x, y), H0(x, y) = a0, H1...
متن کاملOn convolved generalized Fibonacci and Lucas polynomials
We define the convolved hðxÞ-Fibonacci polynomials as an extension of the classical con-volved Fibonacci numbers. Then we give some combinatorial formulas involving the hðxÞ-Fibonacci and hðxÞ-Lucas polynomials. Moreover we obtain the convolved hðxÞ-Fibo-nacci polynomials from a family of Hessenberg matrices. Fibonacci numbers and their generalizations have many interesting properties and appli...
متن کاملGeneralized Fibonacci and Lucas Polynomials and Their Associated Diagonal Polynomials
Horadam [7], in a recent article, defined two sequences of polynomials Jn(x) and j„(x), the Jacobsthal and Jacobsthal-Lucas polynomials, respectively, and studied their properties. In the same article, he also defined and studied the properties of the rising and descending polynomials i^(x), rn(x), Dn(x)y and dn(x), which are fashioned in a manner similar to those for Chebyshev, Fermat, and oth...
متن کاملHOMFLY Polynomials of Torus Links as Generalized Fibonacci Polynomials
The focus of this paper is to study the HOMFLY polynomial of (2, n)-torus link as a generalized Fibonacci polynomial. For this purpose, we first introduce a form of generalized Fibonacci and Lucas polynomials and provide their some fundamental properties. We define the HOMFLY polynomial of (2, n)-torus link with a way similar to our generalized Fibonacci polynomials and provide its fundamental ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Earthline Journal of Mathematical Sciences
سال: 2022
ISSN: ['2581-8147']
DOI: https://doi.org/10.34198/ejms.11123.23114